References

1. Thorsson V, Gibbs DL, Brown SD, et al. The immune landscape of cancer. Immunity 2018; 48:812–830 e14
2. Gibbs DL. Robust classification of immune subtypes in cancer. 2020;
3. Chen T, He T, Benesty M, et al. Xgboost: Extreme gradient boosting. 2015; 1:1–4
4. Geman D, d’Avignon C, Naiman DQ, et al. Classifying gene expression profiles from pairwise mRNA comparisons. Stat Appl Genet Mol Biol 2004; 3:Article19
5. Zhao H, Logothetis CJ, Gorlov IP. Usefulness of the top-scoring pairs of genes for prediction of prostate cancer progression. Prostate Cancer Prostatic Dis 2010; 13:252–9
6. Youssef YM, White NM, Grigull J, et al. Accurate molecular classification of kidney cancer subtypes using microRNA signature. Eur Urol 2011; 59:721–30
7. Auslander N, Zhang G, Lee JS, et al. Robust prediction of response to immune checkpoint blockade therapy in metastatic melanoma. Nat Med 2018; 24:1545–1549
8. Troyanskaya O, Cantor M, Sherlock G, et al. Missing value estimation methods for DNA microarrays. Bioinformatics 2001; 17:520–5
9. Arbeitman MN, Furlong EE, Imam F, et al. Gene expression during the life cycle of drosophila melanogaster. Science 2002; 297:2270–5
10. Zhu X, Wang J, Sun B, et al. An efficient ensemble method for missing value imputation in microarray gene expression data. BMC Bioinformatics 2021; 22:188
11. Lin W-C, Tsai C-F. Missing value imputation: A review and analysis of the literature (2006–2017). 2020; 53:1487–1509
12. Hasan MK, Alam MA, Roy S, et al. Missing value imputation affects the performance of machine learning: A review and analysis of the literature (2010–2021). Informatics in Medicine Unlocked 2021; 27:100799
13. Wang A, Yang J, An N. Regularized sparse modelling for microarray missing value estimation. 2021; 9:16899–16913
14. Chen T, He T, Benesty M, et al. Xgboost: Extreme gradient boosting. 2022;
15. Robin X, Turck N, Hainard A, et al. pROC: An open-source package for r and s+ to analyze and compare ROC curves. BMC Bioinformatics 2011; 12:77
16. Zhu S, Kong W, Zhu J, et al. The genetic algorithm-aided three-stage ensemble learning method identified a robust survival risk score in patients with glioma. Brief Bioinform 2022;
17. Tong M, Zheng W, Li H, et al. Multi-omics landscapes of colorectal cancer subtypes discriminated by an individualized prognostic signature for 5-fluorouracil-based chemotherapy. Oncogenesis 2016; 5:e242
18. Qi L, Li Y, Qin Y, et al. An individualised signature for predicting response with concordant survival benefit for lung adenocarcinoma patients receiving platinum-based chemotherapy. Br J Cancer 2016; 115:1513–1519
19. Huang H, Zou Y, Zhang H, et al. A qualitative transcriptional prognostic signature for patients with stage i-II pancreatic ductal adenocarcinoma. Transl Res 2020; 219:30–44
20. Zheng H, Song K, Fu Y, et al. An absolute human stemness index associated with oncogenic dedifferentiation. Brief Bioinform 2021; 22:2151–2160
21. Kong W, He L, Zhu J, et al. An immunity and pyroptosis gene-pair signature predicts overall survival in acute myeloid leukemia. Leukemia 2022;
22. Liu K, Geng Y, Wang L, et al. Systematic exploration of the underlying mechanism of gemcitabine resistance in pancreatic adenocarcinoma. Mol Oncol 2022; 16:3034–3051
23. Zheng H, Xie J, Song K, et al. StemSC: A cross-dataset human stemness index for single-cell samples. Stem Cell Res Ther 2022; 13:115
24. Monti S, Tamayo P, Mesirov J, et al. Consensus clustering: A resampling-based method for class discovery and visualization of gene expression microarray data. 2003; 52:91–118
25. Wilkerson MD, Hayes DN. ConsensusClusterPlus: A class discovery tool with confidence assessments and item tracking. 2010; 26:1572–1573
26. Hayes DN, Monti S, Parmigiani G, et al. Gene expression profiling reveals reproducible human lung adenocarcinoma subtypes in multiple independent patient cohorts. 2006; 24:5079–5090
27. Verhaak RG, Hoadley KA, Purdom E, et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. 2010; 17:98–110